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A new theoretical approach to describe pre-hydrodynamic stages of evolution in
nonequilibrium fluids is presented. The local density, velocity, and temperature
fields are expressed as integrals over Green’s functions that depend on initial-
state ensemble averages of dynamical quantities. For systems in which the initial
states are nonuniform in only one spatial direction, explicit expressions for
the Green’s functions are derived in terms of initial-state ensemble averages of
moments of particle displacements and products of particle velocities and par-
ticle displacements.
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1. INTRODUCTION

Recent computer simulations of self diffusion (1) and heat transport (2) indi-
cate that on the nanometer length scale and picosecond time scale there are
significant deviations from hydrodynamic behavior in moderately dense
fluids with initial states that are far removed from equilibrium. For
instance, the initial decay of a rectangular heat pulse (2) was observed to
be slower than the decay predicted by hydrodynamics or the telegrapher’s
equation, (3) and during the earliest stage of the decay the kinetic energy was
not equipartitioned. In as much as local equipartition of the kinetic energy
is a necessary condition for the definition of a local hydrodynamic tem-
perature, it appears that hydrodynamic variables are not sufficient to
describe this earliest stage of evolution, nor does it seem appropriate to
try to correct the hydrodynamic equations by adding higher-order space



and/or time derivatives to the equations. The current interest in nano-scale
systems and the use of femtosecond-pulsed lasers to ‘‘observe’’ and modify
these systems (4) will, no doubt, require a deeper understanding of transport
on these very short scales.
In this paper we develop a new theoretical approach for the descrip-

tion of the pre-hydrodynamic stage of evolution of nonequilibrium fluids.
The theory is formally exact and gives explicit expressions for the local
density, velocity, and temperature fields in the fluid, as a function of posi-
tion and time, in terms of Green’s functions. The precise range of applica-
bility of this theory, however, is in general unknown.
When the initial states have nonuniformities (which remove the system

from equilibrium) confined to a single spatial direction, e.g., the heat pulse
of ref. 2, the Green’s functions can be written as an infinite series of
dynamical quantities, such as those composed of products of powers of the
displacement in position and the velocity of a particle at time t. The series
expansion of the Green’s functions are ordered such that the leading term
is dominant as tQ 0 and as tQ.; the remaining terms appear to be small,
making significant contributions only for the brief interval of time that
separates the initial dynamical stage from the hydrodynamic stage of
evolution. These leading terms contain a gaussian with a time dependent
variance. As tQ 0 the variance is proportional to t2, characteristic of free-
particle motion, and as tQ. they are proportional to t, characteristic of
hydrodynamic relaxation. The short time expansions of these averages
show that the basic physical mechanism for the initial stage of the decay
takes place by the free streaming of particles as well as local exchange of
kinetic and potential energy through ‘‘collisional transfer.’’
We begin, in Section 2, by defining variables and stating important

assumptions. The Green’s functions are formally defined in Section 3.
These formal expressions, valid for a broad range of nonequilibrium
systems, are not particularly useful for explicit calculations. In Section 4
we show how the Green’s functions can be re-expressed in a manner that
allows us to describe the pre-hydrodynamic stage of relaxation. The
method shown there is valid for the heat-pulse case, as well as many other
cases in which the non-uniformities of the initial state are confined to a
single spatial direction. In Section 5 we make some final remarks.

2. DEFINITIONS AND ASSUMPTIONS

The initial phase-point of a system of N indistinguishable particles in
a volume V is denoted by C=(rF1, vF1,..., rFN, vFN), where rFi and vFi are the
position and velocity of particle i; the phase-space density function of the
ensemble of initial states is f(C). We shall assume that the Hamiltonian
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for this system of particles is given by H=;i
1
2 mvF

2
i+F, with F=

;i > j j(|rFi−rFj |), where j(r) is a conservative, short-ranged, interparticle
pair potential and m is the particle mass.
As the initial phase point evolves in time the particle positions and

velocities will change; the phase point of the system at the time t is denoted
by Ct=(rF1(t), vF1(t),..., rFN(t), vFN(t)). The phase-space density function for
these phase-points Ct is denoted by f̂(Ct).
The local number density at position rF and time t is given by

n(rF, t)=F dCt f̂(Ct) C
N

i=1
d(rF−rFi(t)). (2.1)

The local particle flux at the position rF and time t is given by

[F(rF, t)=n(rF, t) vF(rF, t)=F dCt f̂(Ct) C
N

i=1
vFid(rF−rFi(t)), (2.2)

where vF(rF, t) is the local fluid velocity. In anticipation of the possibility
that the kinetic energy might not be equipartitioned we define the local
a-component kinetic energy density at position rF and time t by

n(rF, t) eKa (rF, t)=
m
2
F dCt f̂(Ct) C

N

i=1
v2iad(rF−rFi(t)), (2.3)

where a=x, y, or z. The local a-component temperature is defined in terms
of the a-component kinetic energy in the local center of mass reference
frame

1
2 kBTa(rF, t)=e

K
a (rF, t)−

1
2 mva(rF, t)

2, (2.4)

where kB is the Boltzmann constant. When the kinetic energy is equiparti-
tioned Tx=Ty=Tz, and if local or global equilibrium has been established
T=1

3 (Tx+Ty+Tz) is the thermodynamic temperature. Expressions for the
potential energy density and the total energy are not required with this
definition of temperature.

3. THE NONEQUILIBRIUM GREEN’S FUNCTIONS

Given the assumptions described above, the local density, particle flux,
and kinetic energy densities can be expressed in terms of the Green’s func-
tions G(rF, rF Œ, t), JF(rF, rF Œ, t), and Ka(rF, rF Œ, t), respectively. Since the particles
are indistinguishable and dC f(C)=dCt f̂(Ct) we have from (2.1)
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n(rF, t)=N F dC f(C) d(rF−rF1(t))

=nV F drF Œ F dC f(C) d(rF−rF1(t)) d(rF Œ−rF1)

=n F drF Œ 3V F dC f(C) d(rF−rF1(t)) d(rF Œ−rF1)4 . (3.1)

Thus

n(rF, t)=n F drF Œ G(rF, rF Œ, t), (3.2)

where

G(rF, rF Œ, t)=V F dC f(C) d(rF−rF1(t)) d(rF Œ−rF1) (3.3)

and n=N/V.
Let the displacement of particle 1, DrF1(t), be defined by rF1(t)=

rF1+DrF1(t). DrF1(t) does not depend on rF1 because the forces acting on par-
ticle 1 depend only on the distance between other particles in the system.
DrF1(t) is a function of the initial particle velocities and of sF2, sF3,..., sFN, where
sFi=rFi−rF1. Thus

G(rF, rF Œ, t)=V F drF1 dvF1 dsF2 · · ·f(rF1, vF1, sF2+rF1, vF2,...) d(rF−rF1−DrF1(t)) d(rF Œ−rF1).
(3.4)

By integrating over rF1, replacing V with an integral over rF1, and then
changing variables back to C we find

G(rF, rF Œ, t)=V F dvF1 dsF2 · · ·f(rF Œ, vF1, sF2+rF Œ, vF2,...) d(rF−rF Œ−DrF1(t))

=F drF1 dvF1 dsF2 · · ·f(rF Œ, vF1, sF2+rF Œ, vF2,...) d(rF−rF Œ−DrF1(t))

=F dC f(CrŒ) d(rF−rF Œ−DrF1(t))

=Od(rF−rF Œ−DrF1(t))PrŒ, (3.5)

where CrŒ=(rF Œ, vF1, rF2−rF1+rF Œ, vF2, rF3−rF1+rF Œ, vF3,...).
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In the same manner we find

[F(rF, t)=n F drF Œ JF(rF, rF Œ, t), (3.6)

and

n(rF, t) eKa (rF, t)=
m
2
n F drF Œ Ka(rF, rF Œ, t), (3.7)

where

JF(rF, rF Œ, t)=OvF1(t) d(rF−rF Œ−DrF1(t))PrŒ (3.8)

and

Ka(rF, rF Œ, t)=Ov21a(t) d(rF−rF Œ−DrF1(t))PrŒ. (3.9)

Note that

O · · ·PrŒ — F dC f(CrŒ)..., (3.10)

and thus the average over initial states is performed using a phase-space
density function that has been modified by the variable rF Œ; O · · ·PrŒ is a
complicated function of rF Œ.

4. EVALUATION OF THE GREEN’S FUNCTIONS

The utility of this formal description for systems out of equilibrium
depends on the extent to which techniques for evaluating the theory can be
developed. We show, in this section, that the Green’s functions can be
written in a form that highlights the early, pre-hydrodynamic stage of
system evolution. In particular, Eqs. (3.5), (3.8), and (3.9) can be rewritten
in forms that depend on averages of dynamical quantities such as
ODr21(t)PrŒ and OvF 21(t) Dr

2
1(t)PrŒ. To do this we first determine the Fourier

transforms of G, JF, and Ka, make a powerseries expansion of the trans-
forms in the transform variable kF, rearrange the expansions, and invert the
transforms. The rearrangements of the kF expansions are made by factoring
out gaussians so that they and the first one or two terms in the remaining
series give the correct behavior as tQ 0 and tQ.. In other words, the
kF-expansions are ‘‘rearranged’’ in a manner that factors out the Green’s
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functions in a form such that their variances, in the limit of long times,
have a time dependence characteristic of hydrodynamic Green’s functions.
[See Sections 4.1 and 4.2 later.]
Assuming that the non-uniformity of the initial states is confined to

the x-direction so that f(CrŒ) depends only on r
−

x and that f(CrŒ) is
such that jy(rF, t)=jz(rF, t)=0 then n(rF, t)=n(rx, t), [F(rF, t)=jx(rx, t) ı̂, and
eKa (rF, t)=e

K
a (rx, t)—conditions that apply to the heat pulse of ref. 2, as well

as the self-diffusion case of ref. 1—we find, using the method described
above, that

G(rx, r
−

x, t)=g(rx−r
−

x, r) 31+C
.

j=2

rj

r j
j! S (j)−1/2(w

2)4

+
ODr1x(t)PrŒ
`rŒ

wŒg(rx−r
−

x, rŒ) 31+C
.

j=2

r −j
rŒ j
j! S (j)1/2(wŒ

2)4 , (4.1)

Jx(rx, r
−

x, t)=
Ov1x(t) Dr1x(t)PrŒ

`r
wg(rx−r

−

x, r) 31+C
.

j=1

r̄jx

r j
j! S (j)1/2(w

2)4

+Ov1x(t)PrŒ g(rx−r
−

x, r̄) 31+C
.

j=2

c̄jx

r̄ j
j! S (j)−1/2(w̄

2)4 , (4.2)

Ka(rx, r
−

x, t)=Ov21a(t)PrŒ g(rx−r
−

x, r) 351−
ĝa

r
S (1)−1/2(w

2)6

+C
.

j=2

r̂ja

r j
1 j! S (j)−1/2(w2)−

ĝa

r
(j+1)! S (j+1)−1/2 (w

2)24

+
Ov21a(t) Dr1x(t)PrŒ

`r̂a
ŵa g(rx−r

−

x, r̂a) 31+C
.

j=2

ĉja

r̂ ja
j! S (j)1/2(ŵ

2
a)4 .
(4.3)

Here

g(rx−r
−

x, a)=
1

`4pa
exp 5−(rx−rŒ)

2

4a
6 , (4.4)

where ‘‘a’’ may be r, rŒ, r̄, or r̂a , and

r=
1
2
ODr21x(t)PrŒ, w=

(rx−r
−

x)

2`r
, (4.5)

rŒ=
1
3!

ODr31x(t)PrŒ
ODr1x(t)PrŒ

, wŒ=
(rx−r

−

x)

2`rŒ
, (4.6)
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r̄=
1
2
Ov1x(t) Dr

2
1x(t)PrŒ

Ov1x(t)PrŒ
, w̄=

(rx−r
−

x)

2`r̄
, (4.7)

r̂a=
1
3!

Ov21a(t) Dr
3
1x(t)PrŒ

Ov21a(t) Dr1x(t)PrŒ
, ŵa=

(rx−r
−

x)

2`r̂a
. (4.8)

S (n)m (x) are the Sonine polynomials
(5) defined by

S (n)m (x)=C
n

p=0
(−x)p

(n+m)n−p
p!(n−p)!

, (4.9)

where (j)k=j(j−1) · · · (j−k+1), k [ j, and (j)0=1. Additional moments
of the particle displacement and velocity that occur in these equations have
a form similar to the cumulants of the displacement introduced in ref. 1;
they approach zero as tQ 0 and as the system approaches equilibrium. For
the self-diffusion and heat-pulse cases they are quite small at intermediate
times too. They are defined by

ri=
1
(2i)!
5(−1) i ODr2i1x(t)PrŒ−(2i)! C

i

j=1

(−1) j

j!
r jri− j6 , i \ 1 (4.10)

r −i=5(−1) i
1

(2i+1)!
ODr2i+11x (t)PrŒ
ODr1x(t)PrŒ

− C
i

j=1

(−1) j

j!
rŒ jr −i− j6 , i \ 1 (4.11)

c̄ix=
1
(2i)!
5(−1) i Ov1x(t) Dr

2i
1x(t)PrŒ

Ov1x(t)PrŒ
−(2i)! C

i

j=1

(−1) j

j!
r̄ jc̄(i−j) x6 , i \ 1

(4.12)

r̄ix=5(−1) i
1

(2i+1)!
Ov1x(t) Dr

2i+1
1x (t)PrŒ

Ov1x(t) Dr1x(t)PrŒ
− C

i

j=1

(−1) j

j!
r jr̄(i−j) x6 , i \ 1

(4.13)

ĝa=
1
2
Ov21a(t) Dr

2
1x(t)PrŒ

Ov21a(t)PrŒ
−r (4.14)

r̂ia=
(−1) i

(2i)!
Ov21a(t) Dr

2i
1x(t)PrŒ

Ov21a(t)PrŒ
+ĝar̂(i−1) a−

(−1) i

i!
r i

− C
i−1

j=1

(−1) i− j

(i−j)!
r i− j(r̂ja− ĝar̂(j−1) a), i \ 2 (4.15)

ĉia=5(−1) i
1

(2i+1)!
Ov21a(t) Dr

2i+1
1x (t)PrŒ

Ov21a(t) Dr1x(t)PrŒ
− C

i

j=1

(−1) j

j!
r̂ ja ĉ(i−j) a6 , i \ 1

(4.16)

with r0=r
−

0=c̄0x=r̄0x=r̂0a=ĉ0a=1 and r1=r
−

1=c̄1x=ĉ1a=r̂1a=0.
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Although these general equations appear quite complicated, we find
that for the self-diffusion and heat-pulse cases referred to earlier only a few
of the terms in these expansions make any appreciable contribution to the
Green’s functions, and the leading terms dominate at very short and very
long times, as shown in the next two sub-sections.

4.1. Behavior at Short Times

As tQ 0 the dynamical averages O · · ·PrŒ may be expressed as power-
series in t. The function g, however, becomes singular in this limit because
the functions r(t), rŒ(t), r̄(t), and r̂a(t) are, to lowest order in t, propor-
tional to t2. For instance, r(t)=1

2 Ov
2
1xPrŒt

2+·· · . Although we cannot
expand g as a powerseries in t it is nevertheless useful to order the Green’s
functions by the ordering the terms that multiply g. To ‘‘lowest order’’ in t

G (0)(rx, r
−

x, t)=g(rx−r
−

x, r) (4.17)

J (0)x (rx, r
−

x, t)=
(rx−r

−

x)
t

g(rx−r
−

x, r) (4.18)

K (0)x (rx, r
−

x, t)=
(rx−r

−

x)
2

t2
g(rx−r

−

x, r) (4.19)

K (0)+ (rx, r
−

x, t)=Ov21 + PrŒ g(rx−r
−

x, r), (4.20)

where + is y or z. As tQ 0, rQ 1
2 Ov

2
1xPrŒ t

2 and these ‘‘lowest order’’
Green’s functions are those of an ideal fluid.
The next ‘‘order’’ of approximation has been examined for the case

Ov1xPrŒ=0 (which holds for the heat pulse examined earlier
(2)) includes

O(t2) contributions to the dynamical averages. For lack of space we can
only remark here that these additional terms involve the interparticle
potential and result in an exchange between kinetic and potential energy.
Most important, at this order K + is given by K

(0)
+ ; only Kx includes poten-

tial energy changes and thus, at this order, equipartition of kinetic energy is
lost—even if the initial ensemble was equipartitioned. It is clear, therefore,
that there is some time interval, however brief, over which local equilib-
rium, and therefore hydrodynamics, cannot apply.

4.2. Behavior at Long Times

For very large t all of the r’s grow as t and therefore the Green’s
functions become (spatially) flatter and flatter, implying that systems
properties become uniform. In the tQ. limit n(rx,.)=n, vx(rx,.)=0,
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and the kinetic energy is equipartitioned and equal to its equilibrium value.
When this Green’s function approach was applied to the case of self diffu-
sion the relaxation to hydrodynamics could explicitly be demonstrated
and the usual Green–Kubo relation for the self-diffusion coefficient was
obtained. (1) To obtain the analogous result for the heat pulse case turned
out to be much more involved; however, the linear in t growth of the r’s is
consistent with hydrodynamic relaxation, as are the preliminary computer-
simulation results of the theory. (6)

4.3. A Molecular Dynamics Evaluation

The relative importance of the many terms in the equations for the
Green’s functions is difficult to determine analytically, except in the long-
and short-time limits. For an initial, rectangular, heat pulse (non-unifor-
mity in the x-direction only), the low-order dynamical averages have been
computed using molecular dynamics. (6) Most of these averages were of
negligible magnitude; we found that the pre-hydrodynamic stage could be
described using only the first few terms in Eqs. (4.1)–(4.3) [this approxi-
mation is denoted by a superscript (A)]:

G (A)(rx, r
−

x, t)=g(rx−r
−

x, r)=
1

`4pr
exp 5−(rx−r

−

x)
2

4r
6 (4.21)

J (A)x (rx, r
−

x, t)=
Ov1x(t) Dr1x(t)PrŒ

`r
wg(rx−r

−

x, r) 31+
r̄1x

r
13
2
−w224 , (4.22)

K (A)a (rx, r
−

x, t)=Ov21a(t)PrŒ g(rx−r
−

x, r) 51−
ĝa

r
11
2
−w226 . (4.23)

The temperature T(rx, t)=
1
3 (Tx(rx, t)+Ty(rx, t)+Tz(rx, t)) as a function of

rx calculated using these equations is compared to the molecular dynamics
results and a solution of the hydrodynamic equations in Fig. 1. The
agreement with the molecular dynamics calculation is very good. As tQ 0
Eqs. (4.21)–(4.23) reduce to Eqs. (4.17)–(4.20).

5. FINAL REMARKS

The Green’s function approach described here, coupled with molecular
dynamics evaluation of the dynamical averages, gives a useful description of
the pre-hydrodynamic stage of relaxation in two simple cases: self diffusion
and a heat pulse. Extension to other classes of initial states will require
a more complete understanding of the relative importance of the many
dynamical averages that appear in Eqs. (4.1)–(4.3) as well as the development
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2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

0 2 4 6 8 10

rx*

T
*

H

Eqs. (4.21-23) 

Fig. 1. The reduced temperature T*=kBT/e as a function of reduced distance r
g
x=rx/s for

a fluid of density ns3=0.5 at time 0.1s`m/e. (N molecular dynamics, (6) H hydrodyna-
mics (6)) At t=0, T*=3.0 for rx* in (4.5, 5.5) and T*=2 otherwise. Here e and s are the usual
Lennard-Jones parameters.

of techniques for determining the phase-space density function of the
ensemble of initial states for a broad class in interesting cases. (7) In this
respect, perhaps one should consider the approach here as a tentative first
step toward a more general solution; a step for which a limited class of non-
trivial transport problems may be studied in detail, particularly the transi-
tion from the dynamical stage to the hydrodynamic stage.
In the heat-pulse case we note that the telegrapher’s equation, based

as it is on the local equilibrium temperature, does not describe the pre-
hydrodynamic stage any better than does hydrodynamics. (6) There does,
however, seem to be some validity to Maxwell’s observation (8) that the
temperature field should not relax, over all time intervals, in the purely
diffusive manner implicit in the parabolic heat equation. At times of the
order 0.01 ps, our molecular dynamics heat-pulse calculations show that
heat ‘‘propagates’’ by a combination of free streaming and collisional
energy transfer that is purely dynamical rather than dissipative.
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